Search results

Search for "quartz tuning fork" in Full Text gives 18 result(s) in Beilstein Journal of Nanotechnology.

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • the optimal diameter was found to be 0.1 mm. Keywords: finite element method; long tilted tip; noncontact atomic force microscopy; qPlus sensor; quartz tuning fork; simulations; Introduction Quartz tuning forks are widely used in the watch industry because of their low frequency offset over a wide
  • temperature range [1]. In addition, quartz tuning forks have a high elastic constant, a high quality factor (Q factor), and are self-sensing due to the piezoelectric effect [1]. Therefore, a quartz tuning fork can be used as a force sensor. The central part of the “qPlus sensor” is a quartz tuning fork of
  • optimal tip size can be derived from the simulation results. Methods Model and parameters The model in the simulation is based on an MS1V-T1K-type quartz tuning fork used in our experiment (details will be described later). The dimensions of the MS1V-T1K quartz tuning fork, length L = 3423 µm, width W
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • advantage of AFM manipulation methods, CB[n] is ideally suited to mediate sub-nanometer gap formation. For this, a sharply pointed glass tip is glued to a piezoelectric quartz tuning fork (Figure 1C), which enables to control the tip position with respect to AuNPs deposited on a glass surface with sub
  • formed of spherical AuNPs attached to a sharply pointed glass tip. Inset: Magnification to the gap region showing the aligned CB[n]s on the NP surfaces, which results in a sub-nanometer gap distance. (C) Macroscale picture of a glass tip attached to a piezoelectric quartz tuning fork acting as a force
PDF
Album
Full Research Paper
Published 17 Aug 2018

Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

  • Hannes Beyer,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2016, 7, 432–438, doi:10.3762/bjnano.7.38

Graphical Abstract
  • stiffness k of the LER leads to a frequency shift signal about 20 times smaller compared to quartz tuning fork sensors. For accurate measurements with the LER it is important to minimise disturbances of the resonance frequency by sources unrelated to the tip–sample interaction. Figure 2a shows the variation
PDF
Album
Full Research Paper
Published 15 Mar 2016

A simple method for the determination of qPlus sensor spring constants

  • John Melcher,
  • Julian Stirling and
  • Gordon A. Shaw

Beilstein J. Nanotechnol. 2015, 6, 1733–1742, doi:10.3762/bjnano.6.177

Graphical Abstract
  • ]. However, a direct comparison between theory and experiment requires that an absolute, quantitative framework for the measurement is established, as illustrated by a recent work in single dimer manipulation [5]. In recent years, quartz tuning fork sensors have emerged as an attractive alternative to
  • EI, and the uncertainty in the effective length is estimated by Optical images of a commercial qPlus sensor [8]. (a) Plane-view image consisting of an E158 quartz tuning fork (Micro Crystal, Switzerland) that is glued to a ceramic mount such that one tine is immobilized. A tungsten wire tip is
PDF
Album
Full Research Paper
Published 14 Aug 2015

Nano-contact microscopy of supracrystals

  • Adam Sweetman,
  • Nicolas Goubet,
  • Ioannis Lekkas,
  • Marie Paule Pileni and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2015, 6, 1229–1236, doi:10.3762/bjnano.6.126

Graphical Abstract
  • based on a combination of STM and dynamic force microscopy (DFM) imaging and spectroscopy. DFM experiments, also known as non-contact AFM (NC-AFM), are carried out using a quartz tuning fork sensor in the qPlus geometry [16][17] to which a tip has been glued. Shifts in the resonant frequency of a tine
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • custom-built quartz-tuning fork sensor was used for the measurements. It had a main resonance frequency of 51294 Hz, a quality factor above 1000 and an estimated stiffness of ≈3800 N·m−1 [22]. The contact to the tungsten tip was made of a thin golden wire in order to avoid crosstalk with the deflection
PDF
Album
Full Research Paper
Published 07 Apr 2015

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • Philipp Leinen,
  • Alexander Grötsch,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 1926–1932, doi:10.3762/bjnano.5.203

Graphical Abstract
  • quality factor of Q ≈ 70,000. Contacting and manipulation were performed with the qPlus sensor oscillating with an amplitude of A0 ≈ 0.2–0.3 Å. Interactions in the junction were monitored by measuring the frequency shift Δf(z) ≈ −(f0/2k0)dFz/dz, where k0 = 1800 N/m is the stiffness of the quartz tuning
  • fork used. The essence of our approach lies in the coupling of the sub-angstrom precise positioning of the tip of our instrument to the motion of the operator's hand [18]. This is achieved with the help of a commercial motion tracking system from VICON (see Figure 2). The VICON software was used to
PDF
Album
Supp Info
Video
Full Research Paper
Published 31 Oct 2014

Mechanical properties of sol–gel derived SiO2 nanotubes

  • Boris Polyakov,
  • Mikk Antsov,
  • Sergei Vlassov,
  • Leonid M Dorogin,
  • Mikk Vahtrus,
  • Roberts Zabels,
  • Sven Lange and
  • Rünno Lõhmus

Beilstein J. Nanotechnol. 2014, 5, 1808–1814, doi:10.3762/bjnano.5.191

Graphical Abstract
  • cantilevers, Nanosensors, C = 0.2 N/m) to one prong of a commercially available quartz tuning fork (QTF, ELFA). The tip of the ATEC-CONT cantilevers is tilted about 15 degrees relative to the cantilever, which makes the tip visible from the top. In experiments the QTF was driven electrically by an AC voltage
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2014

Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations

  • Jens Falter,
  • Marvin Stiefermann,
  • Gernot Langewisch,
  • Philipp Schurig,
  • Hendrik Hölscher,
  • Harald Fuchs and
  • André Schirmeisen

Beilstein J. Nanotechnol. 2014, 5, 507–516, doi:10.3762/bjnano.5.59

Graphical Abstract
  • . Their spread in geometric parameters is within a low range and the characterization of their geometric parameters has been presented extensively by theory and experiments [6][7][8]. Quartz tuning fork force sensors in contrast are usually hand-made and even though they are commercially available, they
  • negligible angle between the tip wire axis and the surface normal of the tuning fork prong. Results and Discussion Experiment The quartz tuning fork, originally used as frequency normal in wrist watches constitutes the centerpiece of a force sensor in the “qPlus” design. Figure 1 shows micrographs from
  • for such a measurement is shown in Figure 2. In order to validate this measurement method we assembled a test sensor similar to the “qPlus” sensor setup. In the same way as in a “qPlus” sensor, a quartz tuning fork was glued onto a Macor body, and a tungsten wire with a diameter of dW-wire = 50 μm was
PDF
Album
Full Research Paper
Published 23 Apr 2014

Manipulation of nanoparticles of different shapes inside a scanning electron microscope

  • Boris Polyakov,
  • Sergei Vlassov,
  • Leonid M. Dorogin,
  • Jelena Butikova,
  • Mikk Antsov,
  • Sven Oras,
  • Rünno Lõhmus and
  • Ilmar Kink

Beilstein J. Nanotechnol. 2014, 5, 133–140, doi:10.3762/bjnano.5.13

Graphical Abstract
  • . Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models
  • ) equipped with a custom-made force sensor. The force sensor was made by gluing an electrochemically sharpened tungsten wire or commercial AFM cantilever with a sharp tip (Nanosensor ATEC-CONT cantilevers C = 0.2 N/m) to one prong of a commercially available quartz tuning fork (QTF). The tip of ATEC-CONT
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2014

k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy

  • Martin Esmann,
  • Simon F. Becker,
  • Bernard B. da Cunha,
  • Jens H. Brauer,
  • Ralf Vogelgesang,
  • Petra Groß and
  • Christoph Lienau

Beilstein J. Nanotechnol. 2013, 4, 603–610, doi:10.3762/bjnano.4.67

Graphical Abstract
  • is controlled using a tuning fork-based force sensor in a noncontact-mode atomic force microscope (AFM). This microscope is a modified version of the setup described in [10]. The taper probe is attached to one prong of a quartz tuning fork that oscillates with a peak-to-peak amplitude of 1 nm. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2013

Optimal geometry for a quartz multipurpose SPM sensor

  • Julian Stirling

Beilstein J. Nanotechnol. 2013, 4, 370–376, doi:10.3762/bjnano.4.43

Graphical Abstract
  • silicon cantilevers, by exciting torsional modes to generate the lateral motion needed for the LFM [10]. The qPlus sensor has been used as an LFM by rotating the tip on the end of the quartz tuning fork [11], but no combined AFM/LFM qPlus system has been developed due to the magnitude of the torsion
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2013

Calculation of the effect of tip geometry on noncontact atomic force microscopy using a qPlus sensor

  • Julian Stirling and
  • Gordon A. Shaw

Beilstein J. Nanotechnol. 2013, 4, 10–19, doi:10.3762/bjnano.4.2

Graphical Abstract
  • and molecular interactions [6][7]. As with all forms of AFM, image resolution and force measurements ultimately depend on the structure of the last few angstroms of the tip apex [1][2][4][6][7][8][9]. The qPlus sensor is unusual for an AFM sensor in that it is constructed from a quartz tuning fork and
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2013

Spring constant of a tuning-fork sensor for dynamic force microscopy

  • Dennis van Vörden,
  • Manfred Lange,
  • Merlin Schmuck,
  • Nico Schmidt and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 809–816, doi:10.3762/bjnano.3.90

Graphical Abstract
  • tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations were performed
  • Dennis van Vorden Manfred Lange Merlin Schmuck Nico Schmidt Rolf Moller Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1–21 47048 Duisburg, Germany 10.3762/bjnano.3.90 Abstract We present an overview of experimental and numerical methods to determine the spring constant of a quartz
PDF
Album
Full Research Paper
Published 29 Nov 2012

Models of the interaction of metal tips with insulating surfaces

  • Thomas Trevethan,
  • Matthew Watkins and
  • Alexander L. Shluger

Beilstein J. Nanotechnol. 2012, 3, 329–335, doi:10.3762/bjnano.3.37

Graphical Abstract
  • fact, in many cases atomic-resolution images are only obtained after the tip has been deliberately crashed into the surface, implying that the tip apex is formed from surface species [1][2]. The development of NC-AFM based on a quartz tuning fork (qPlus sensor) instead of a silicon cantilever has led
PDF
Album
Full Research Paper
Published 13 Apr 2012

Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM

  • Fabien Castanié,
  • Laurent Nony,
  • Sébastien Gauthier and
  • Xavier Bouju

Beilstein J. Nanotechnol. 2012, 3, 301–311, doi:10.3762/bjnano.3.34

Graphical Abstract
  • functionalized tip, that is, with a CO molecule attached to the tip apex acting as a supertip [60]. Most of the mentioned studies were based on a technical improvement consisting of the use of a tuning fork of the qPlus sensor type [61]. This sensor is an AFM tip that is fixed to one branch of a quartz tuning
  • fork and provides a stiff probe capable of being approached close enough to the sample without touching the surface [62]. When the probe is oscillating above the sample, one of the characteristics of an experimental FM-AFM setup is the presence of several feedback loops to pilot the probe based on the
PDF
Album
Full Research Paper
Published 02 Apr 2012

Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique

  • Zsolt Majzik,
  • Martin Setvín,
  • Andreas Bettac,
  • Albrecht Feltz,
  • Vladimír Cháb and
  • Pavel Jelínek

Beilstein J. Nanotechnol. 2012, 3, 249–259, doi:10.3762/bjnano.3.28

Graphical Abstract
  • .3.28 Abstract We present the results of simultaneous scanning-tunneling and frequency-modulated dynamic atomic force microscopy measurements with a qPlus setup. The qPlus sensor is a purely electrical sensor based on a quartz tuning fork. If both the tunneling current and the force signal are to be
PDF
Album
Full Research Paper
Published 15 Mar 2012

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • fork. The qPlus sensor [8] is based on a quartz tuning fork, in which one prong is attached to a carrier substrate. The large spring constant of the qPlus, k = 1800 Nm−1, allows one to overcome the snap-to-contact-problem in small-amplitude operation [9]. In this mode, the qPlus setup is customized for
PDF
Album
Letter
Published 29 Feb 2012
Other Beilstein-Institut Open Science Activities